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The aim of this paper is to present a new explicit time scheme for electro-
magnetic particle simulations. The main property of this new scheme, which
depends on a parameter, is to reduce and in some cases to suppress numerical
instabilities that can appear in this context and are widely described in the
literature. Other numerical properties are also investigated, and a numerical
example is finally given to illustrate our purpose. Q 1997 Academic Press
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1. INTRODUCTION

The numerical simulation of charged particle beams or plasma physics phenomena
requires methods of solution for the time-dependent coupled Maxwell–Vlasov
system. In this framework, various authors have pointed out some specific problems
such as unphysical noises and instabilities which may appear when particle simula-
tions are coupled with grid methods such as finite differences or finite elements
[1–3]. Theoretical studies have predicted these instabilities will arise [1, 4], and
numerical experiments have confirmed their existence [5].

The interpretation of such instabilities is based on analysis of the numerical
dispersion relation [6, 7], that is a relation between each wavenumber k and a
propagation velocity vf (the phase velocity) which is an approximation of the light
velocity c. When vf falls below c, an instability can be produced by an unphysical
resonance between the electromagnetic waves propagating at vf and particles that
are moving faster. For this reason, Godfrey [8] refers to this effect as a numerical
Tcherenkov instability.
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The principle of the study consists in linearizing the system of equations and
applying a Fourier transform in space and time to obtain a description of perturba-
tions as a superposition of harmonics of the form exp ı(kx 2 gt). One obtains a
condition relating g and k called the dispersion relation. If the roots g(k) of this
relation are complex, an instability can appear because complex roots usually appear
in complex conjugate pairs. However, the linearization and the Fourier transform
are theoretically valid under some regularity assumptions (uniform plasmas or
sufficiently smooth data). Nevertheless, the results obtained are commonly extended
outside these assumptions (in particular for stiff beams), according to the practice.

Several approaches were proposed to find remedies for this instability. High-
order finite difference methods in the same spirit as in [9], implicit time schemes,
or finer resolutions can be used, since they improve the dispersion relations. They
are, however, not convenient to use because of difficulty in implementation. Other
options have been presented and are essentially based on temporal and spatial
filtering techniques [10–13].

In this article, we propose a new scheme to discretize the Maxwell equations
that reduces, and in some cases suppresses, the numerical instability, according to
the value of a parameter «. Section 2 is devoted to a presentation of the scheme in
terms of finite differences and finite element methods. Some elementary numerical
properties, useful for a numerical implementation, are proved. The dispersion rela-
tion is derived from the relativistic fluid plasma linear analysis in Section 3, where
the behavior of this new scheme with regard to instabilities is also investigated.
These results are supported by a numerical example given in Section 4. Finally, a
conclusion is drawn in Section 5.

2. PRESENTATION OF THE NEW SCHEME

2.1. The Vlasov–Maxwell Problem

2.1.1. The Continuous Problem

We consider a population of charged particles with a mass m and a charge q. The
motion of these charged particles can be described in terms of particle distribution
functions by the relativistic Vlasov equation,

­f
­t

1 V ?
­f
­X

1 F ?
­f
­P

5 0, (2.1)

where f (X, P, t) denotes the distribution function, V 5 V(P) is the velocity, and
F 5 F (X, P, t) is the electromagnetic force, with the relations:

P 5 cmV,

cm 5
ÏuPu2 1 m2c2

c
,
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and

F 5 q(E 1 V 3 B). (2.2)

In (2.2), E 5 E(X, t) and B 5 B(X, t) are the electric and magnetic fields which
are solutions of the vacuum Maxwell equations:

­E
­t

2 c2= 3 B 5 2
1
«0

J, (2.3)

­B
­t

1 = 3 E 5 0, (2.4)

= ? E 5
r

«0
, (2.5)

= ? B 5 0. (2.6)

The charge and current densities r and J are obtained from the solution f of the
Vlasov equation according to

r 5 q E
R3 f dp, J 5 q E

R3 V(p) f dp. (2.7)

As we previously presented in [14], we rewrite Eqs. (2.3) and (2.4) in terms of
two second-order wave equations (by using the identity = 3 (= 3 U) 2 =(= ?

U) 5 2DU), so that E is a solution of

­2E
­t2 2 c2DE 5 2

1
«0

­J
­t

2
c2

«0
=r, (2.8)

= ? E 5
1
«0

r, (2.9)

and B is a solution of

­2B
­t2 2 c2DB 5

1
«0

= 3 J, (2.10)

= ? B 5 0. (2.11)

It makes sense now to study a 1D discretization of the system (2.8)–(2.10) while
it was not possible for the initial system (2.3)–(2.4).

We supplement this system with appropriate boundary and initial conditions.
The boundary conditions may be perfectly conducting conditions, absorbing condi-
tions, or symmetry conditions. We refer again to [14], where the issue of the well-
posedness of the second-order wave equations in connection with the choice of
boundary and initial conditions has been thoroughly discussed.



174 ASSOUS, DEGOND, AND SEGRÉ

2.1.2. The Discretization

The Vlasov equation is numerically solved by means of a particle method. The
distribution function f (?, ?, t) is approximated at any time t, by a linear combination
of delta distributions in the phase space,

f (X, P, t) 5 O
k

wk d(X 2 Xk(t))d(P 2 Pk(t)), (2.12)

where each term of the sum can be identified with a macro-particle, characterized
by its weight wk , its position Xk , and its momentum Pk . This distribution function
is a solution of the Vlasov equation (2.1) if and only if (Xk , Pk ) is a solution of
the differential system:

dXk

dt
5 Vk 5

Pk

ck m
, (2.13)

dPk

dt
5 F (Xk , Pk ), (2.14)

which describes the time evolution of a particle k, submitted to the electromagnetic
force F. This system is numerically solved by a leapfrog scheme (see [15] for
more details).

We now recall the finite element formulation we used in [14]. Since the two wave
equations (2.8) and (2.10) are of the same mathematical nature, we will concentrate
on one of them, namely the E-wave equation (2.8). The variational formulation
associated with (2.8) is written, in the case of perfect conductor boundary conditions:

d2

dt2EV
E ? F dx 1 c2E

V
=E : =F dx 5 2

1
«0

d
dt
E

V
J ? F dx 1

c2

«0
E

V
r= ? F dx ;F, (2.15)

where F is a test function chosen in an appropriate functional space. The reader may
refer to [14] for more details on the mathematical background of this formulation. If
we define suitable approximations spaces (in the following, it will be always the P1
nodal element, namely continuous functions with their restriction to each element
being a polynomial of degree 1) and apply the leapfrog scheme in time, we obtain
the following time discretization:

At each time step find the E n11
h solution of

1
Dt2 EV

(E n11
h 2 2E n

h 1 E n21
h ) ? Fh dx 1 c2 E

V
=E n

h ? =Fh dx
(2.16)

5 2
1
«0

1
Dt

E
V

(J n11/2
h 2 J n21/2

h ) ? Fh dx 1
c2

«0
E

V
rn

h= ? Fh dx ;Fh .
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We denote by [Eh] the column vector made of the degrees of freedom of Eh and
[Fh ]t the row vector made of the degrees of freedom of Fh . We then introduce the
mass matrix, the rigidity matrix, and the ‘‘gradient matrix,’’ respectively defined by

[Fh]t M [Eh ] 5E
V

Eh ? Fh dx, [Fh ]t K [Eh ] 5E
V

=Eh ? =Fh dx, [Fh ]t Lr 5E
V

rh= ? Fh dx,

(2.17)

so that (2.16) is written as (we drop the subscript h and the [ ]):
At each time step find the E n11 solution of

1
Dt2 M(E n11 2 2E n 1 E n21 ) 1 c2KE n 5 2

1
«0

M(J n11/2 2 J n21/2 ) 1
c2

«0
Lrn. (2.18)

As the mass matrix is not diagonal, we have to invert at each time step a linear
system the dimension of which is the dimension of the finite element space. In
order to lead to easier and cheaper computations, we chose to replace M by the
diagonalized matrix D, obtained by using a quadrature formula which does not
deteriorate the accuracy of the method. The problem to solve becomes:

Find E n11 such that

1
Dt2 D(E n11 2 2E n 1 En21 ) 1 c2 KE n 5 Gn, (2.19)

where Gn denotes the right-hand side of (2.18).
To obtain the corresponding finite differences expression, we introduce a 1D

regular grid xi 5 (i 2 1)Dx, i 5 1, 2, ..., m, so that the exact mass matrix is defined by

F tME 5 EL

0
EF dx 5

Dx
6 O

i
Fi (Ei11 1 4Ei 1 Ei21 ), (2.20)

and the approximate diagonal mass matrix is such that

F tDE 5 Dx O
i

Fi Ei Q EL

0
EF dx, (2.21)

that is a second-order approximation of (2.20).
Finally the rigidity matrix is given by

F tKE 5 EL

0
=E=F dx 5

1
Dx Oi

Fi (2Ei11 1 2Ei 2 Ei21 ). (2.22)

It is easy to check that the left-hand side of (2.19) is the classical finite difference
operator given by

En11
i 2 2En

i 1 En21
i

Dt2 2 c2 En
i11 2 2En

i 1 En
i21

Dx2 , (2.23)
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which is a nondissipative centered second-order scheme, stable under the condition
cDt/Dx # 1 in 1D. As is well known, the extension of this discretization to a 2D
or 3D regular grid leads to the classical Yee scheme [16], which generates numerical
instabilities when dealing with shocks or with stiff sources. Furthermore, various
authors [7, 13] have shown that this discretization of the Maxwell equations, coupled
with a particular scheme (2.12)–(2.14) for the resolution of the Vlasov equation
can cause unphysical effects on the field solution, which may interact with particles
to induce rapidly growing numerical instabilities. In order to avoid these numerical
instabilities, we introduce a new scheme.

2.2. Construction of the New Scheme

Let us consider the formulation (2.18) with the complete mass matrix M which
implies solving the algebraic system

ME n11 5 M(2En 2 En21 ) 1 Dt2(F n 2 c2 KE n ). (2.24)

We decompose the matrix M into two parts

M 5 (M 2 D) 1 D, (2.25)

and we keep the diagonalized part D in the left-hand side to avoid the inversion
of a full mass matrix, so that (2.24) becomes

DE n11 5 M(2E n 2 En21 ) 1 Dt2(F n 2 c2 KE n ) 2 (M 2 D)E n11. (2.26)

It remains to use a suitable prediction E n11 of the right-hand side En11, to obtain
in all the cases an explicit time-stepping method. We choose

E n11 5 «E n 1 (1 2 «)Ẽn11, (2.27)

where « is a positive parameter (« $ 0), and where Ẽn11 is the solution of the
problem (2.19), namely

Ẽn11 5 2(E n 2 E n21 ) 2 Dt2D21(F n 2 c2KEn ). (2.28)

Our new scheme can finally be expressed as

DE n11 5 M(2En 2 En21) 1 Dt2(F n 2 c2KEn) 2 (M 2 D)(«En 1 (1 2 «)Ẽn11 ). (2.29)

It has to be pointed out that the expression (2.29) is a finite-element formulation
valid either in one, two, or three dimensions. The finite difference form of this
scheme is easily derived from (2.29). It will be derived here in one dimension, but
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can be easily obtained in a similar way in two and three dimensions. By using the
expression (2.28) of Ẽn11 and the integration formulae (2.20)–(2.22), we obtain

E n11
i 2 S«

6
E n

i11 1 S2 2
«

3DE n
i 1

«

6
E n

i21D1 S«

6
E n21

i11 1 S1 2
«

3DE n21
i 1

«

6
E n21

i21 D
2

c2Dt2

6 Dx2 [2(1 2 «)E n
i12 1 (10 2 4«)E n

i11 2 (18 2 6«)En
i 1 (10 2 4«)E n

i21

2 (1 2 «)E n
i22 ] 5 0. (2.30)

Remarks. 1. The time discretization, for « 5 0, coincides with the leapfrog
scheme used in (2.23), whereas the space one is a five-mesh-point discretization.
For « 5 1, the space discretization coincides with the space discretization in (2.23),
whereas the time one is different; the time values E(t n21) and E(tn) are split on
the three neighbouring nodes xi21 , xi , xi11 with a coefficient related to «. The new
scheme is, however, explicit for all « since the time value E(tn11) is never split. In
the numerical experiments, it seems natural to choose « [ [0, 1].

2. The expression (2.29) allows us to see this scheme as a kind of prediction–
correction: (2.28) consists of a prediction that coincides with (2.23) in the finite
difference formulation; (2.29) is the correction which is decentered as soon as « ?
0. If « 5 1, there is no more prediction and the scheme is decentered at most. We
will see more precisely these properties in the next section, especially the role of
the parameter «.

2.3. Elementary Numerical Properties of the New Scheme

In this section, we investigate some elementary properties which are useful for
a numerical implementation, namely the consistency, the stability, the dissipation,
and the order of the scheme.

Let us call S« (E n
i ) the left-hand side of (2.30); by using Taylor expansions we

obtain the approximation:

S« (E n
i ) 5 S ­2

­t2 2 c2 ­2

­x2D E(xi , t n) 1 O(Dt2 1 Dx2 )

2
«

6 FDx2

Dt
­3

­t­x2 E(xi , tn ) 1 O SDx2 1
Dx4

Dt DG. (2.31)

Remarks. 1. We can deduce from (2.31) that the new scheme is, in 1D, a
consistent approximation of the wave operator if and only if Dx2/Dt is bounded.
This condition is always fulfilled in practice.

2. When « 5 0 this scheme is of order 2 in time and in space.

3. When « ? 0 the scheme is of order 1 and the extra term proportional to the
third-order derivative, namely ­3E/­t­x2, can be identified with a viscosity term
which induces a certain amount of dissipation, according to the value of «. This
point will be confirmed and specified with the Fourier analysis. In practice, however,
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the numerical examples show that the precision is not significantly affected by the
loss of the order when dealing with « ? 0.

We therefore consider the finite difference expression (2.30) for studying the stabil-
ity of the scheme by Fourier techniques.

Taking the Fourier transform of (2.30) (with b 5 c(Dt/Dx), a 5 sin2(k Dx/2),
and Ê the Fourier transform of E), we obtain

Ê n11 5 F2 S1 2
«

3
a2D2

b2

3
(12a2 1 8(1 2 «)a4)G Ên 2 S1 2 2

«

3
a2D Ên21, (2.32)

or equivalently, by introducing the transfer matrix,

SÊn11

Ên D5 12 S1 2
«

3
a2D2 4

b2

3
a2(3 1 2(1 2 «)a2) 2 S1 2 2

«

3
a2D

1 0
2S Ên

Ên21D .

(2.33)

The stability is fulfilled when the two eigenvalues l1 , l2 are such that ul1 u , 1,
ul2 u , 1. After some algebra, it can be shown that:

Property 2.1. The scheme is stable if

b # ! 3 2 «

5 2 2«
. (2.34)

Note first that, in the case « 5 0, this condition (b , 0.774) is slightly more
restrictive than the leapfrog stability condition (b # 1). The maximum value is,
however, rising with «, becoming less restrictive from « 5 0 to « 5 1 (where
b # 0.816).

As a by-product of the stability study, we can evaluate the dissipation of the
scheme. For doing this, we have to investigate the positions of the eigenvalues
compared with 1. We obtain that l1 5 l2 are such that

ul1 u2 5 ul2 u2 5 ulu2 5 1 2 2
«

3
a2. (2.35)

We have, therefore, the following property.

Property 2.2. The scheme is dissipative for « []0, 1]. This dissipation can be
evaluated by

1 2 ulu 5 1 2 !1 2
2
3

a2« . (2.36)

For « 5 0, the scheme is nondissipative.



179TREATING NUMERICAL TCHERENKOV INSTABILITY

Remark. Note that this dissipation is independent of b. Moreover, it depends
on a in such a way that the higher the frequencies are, the greater the dissipation
is. Observe finally that the greater « is, the more dissipative the scheme is.

3. LINEAR ANALYSIS OF THE WAVES IN A FLUID PLASMA

As we mentioned in the Introduction, we will use in this section a fluid plasma
model to describe the motion of the particles. We will assume that all the particles
could be considered as a homogeneous field-free cold plasma, drifting with a con-
stant velocity u0 . With these assumptions, we will illustrate in a first part how a
Tcherenkov instability could grow in the continuous model. The second part will
be devoted to the analysis of the numerical Tcherenkov instability. We will in
particular see in which way the new scheme can reduce this instability.

3.1. Stability Analysis in the Continuous Problem

We begin this section by deriving the dispersion relation. We refer the reader to
a large bibliography for more details ([17, 6, 7] among others), even if the relativistic
case we develop here is not commonly derived.

The fluid equations for the electrons and the ions are written as

­na

­t
1 = ? (na ua ) 5 0

(3.1)
­pa

­t
1 Spa

ca
? =D pa 2

qa

ma
SE 1

pa

ca
3 BD5 0,

where na and ua denote the particle density and velocity for each species of particle
a, with pa 5 caua and ca 5 (1 1 p2

a/c2)1/2. The system (3.1) is coupled with the
Maxwell equations (2.3)–(2.6), where, in this context, the right-hand sides J and r

have to be expressed as a function of na and ua , namely,

J 5 O
a

qa na ua ,
(3.2)

r 5 O
a

qa na .

The first step consists in linearizing this system around the homogeneous steady-
state defined by (a standing for the electrons or the ions)

ua 5 u0 ,

na 5 n0 5 const,

O
a

qa 5 0,
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so that, in this equilibrium,

E0 5 0, B0 5 0.

By retaining only the first-order terms of the expansion around this steady state
for the electrons, we obtain

­n1

­t
1

1
c0

(n0= ? p1 1 p0 ? =n1 ) 5 0,

­p1

­t
1 Sp0

c0
? =D p1 2

q
m SE1 1

p0

c0
3 B1D5 0,

= ? E1 5
1
«0

(q n1 ),
(3.3)

= ? B1 5 0,

1
c2

­E1

­t
2 = 3 B1 5 2e0

q
c0
Sn0 Sp1 2

p0 p1

c2 1 p2
0

p0D1 n1 p0D,

­B1

­t
1 = 3 E1 5 0,

with p0 5 c0 u0 and c0 5 (1 1 p2
0 /c2 )1/2, the index 1 denoting the order of the

approximation. A Fourier transform in (x, t) of (3.3) and the elimination of B̂1 ,
û1 , n̂1 leads to the dispersion relation

(g2 2 c2uku2 )Ê1 1 c2(k ? Ê1)k 5
g

g 2 k ? u0

g2
p

c0
SS1 2

u0 ? k
g D Ê1 1

u0 ? Ê1

g
k

2
p0

c2 1 p2
0
SS1 2

u0 ? k
g D p0 ? Ê1 1

u0 ? Ê1

g
p0 ? kDD

1
g

(g 2 k ? u0 )2

g2
p

c0
SS1 2

u0 ? k
g D (Ê1 ? k) 1

uku2

g
(u0 ? Ê1 )D u0, (3.4)

where gp denotes the plasma frequency defined by g2
p 5 q2n/«0m.

We introduce now (j, h, z) a direct orthonormal basis of R3, such that j 5 k/uku,
u0 5 uu0u(cos uj 1 sin uh), 0 # u # f, and we write the matrix D(g, k) such that
D(g, k) Ê1 5 0. Some algebra yields

D(g, k) 5 1D11 D12 0

D12 D22 0

0 0 D33
2 (3.5)
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with

D11 5 c0 g2 2
g2

p g2

(g 2 uu0uuku cos u)2 1
g2

p g cos2 u

g 2 uu0uuku cos u

p2
0

p2
0 1 c2 ,

D12 5 2
g2

p guu0uuku sin u

(g 2 uu0uuku cos u)2 1
g2

pg sin u cos u

g 2 uu0uuku cos u

p2
0

p2
0 1 c2 ,

D22 5 c0 (g2 2 c2uku2 ) 2
g2

p (g2 2 2guu0uuku cos u 1 uu0u2uku2 )
(g 2 uu0uuku cos u)2

(3.6)

1
g2

pg sin2 u

g 2 uu0uuku cos u

p2
0

p2
0 1 c2 ,

D33 5 c0 (g2 2 c2uku2 ) 2 g2
p ,

so that the dispersion relation (3.4) can be rewritten

det D(g, k) 5 (c0(g2 2 c2 uku2 ) 2 g2
p ) D(g, k) 5 0, (3.7)

where D(g, k) is the determinant of the two first columns and rows of D(g, k).
The solutions g(k) of c0(g2 2 c2uku2 ) 2 g2

p 5 0 correspond to electromagnetic
waves. The interesting point consists in finding the roots of D(g, k), that is, without
any assumption, a polynomial of degree 6. If we first consider the case u 5 0, that
means u0 parallel to k, D(g, k) is a polynomial of degree 3 in g. This polynomial
can be written in the canonical form g3 1 pg 1 q. It can be then verified that the
condition 4p3 1 27q2 # 0 is always fulfilled, so that the roots of D(g, k) are always
real and the system is stable. Let us consider now the case u 5 f/2, which corresponds
to a velocity u0 perpendicular to k. We obtain for D(g, k) a polynomial of degree
2 in g2, the solutions of which are

g2
6 5

1
2c0

(g2
p S2 2

p2
0

p2
0 1 c2D1 c2uku2

(3.8)

6 !Sc2uku2 2 g2
p

p2
0

p2
0 1 c2D1 4g2

puku2(c2 2 c0 (c2 2 uu0u2)))

and are positive under the condition

g4
p S1 2

p2
0

p2
0 1 c2D1 c0g2

puku2(c2 2 uu0u2) . 0. (3.9)

This condition is obviously fulfilled in the continuous problem we considered, uu0 u
being always less than c with our assumptions (propagation in the vacuum, etc.).
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FIG. 1. Dispersion relation for the leapfrog scheme1 and the continuous case2.

Consider now a medium in which uu0u can be greater than c. We can then determine
a limit wavenumber klim defined by

k2
lim 5

g2
p

c3
0 (uu0u2 2 c2)

, (3.10)

such that, for uku . klim , the g2–(k) root of (3.8) is negative. In these conditions,
two solutions of the dispersion relation (3.7) are complex (purely imaginary), namely
6i Ïug2–(k)u, that leads to an unwanted exponentially growing wave, which can be
identified with a Tcherenkov radiation [17]. Under this condition, the instability
will be generated for the wavenumbers k that are greater than the klim defined in
(3.10). This value klim increases with the plasma frequency gp and decreases with
the distance from uu0u to c. In order to understand the numerical Tcherenkov
instability, we will extend now this analysis to the discretized problem.

3.2. Numerical Tcherenkov Instability

In the continuous case, the waves propagate at a velocity c 5 g/k. After discretiza-
tion, the waves propagate at a velocity vf , the phase velocity, that is nothing but
a numerical approximation of c. vf is also expressed as vf 5 g/k, but g and k are
in this case related by the relation (3.8). For the leapfrog scheme for instance, the
result is well known and the relation reads

sin2(g Dt/2)
(Dt/2)2 5 c2 sin2(k Dx/2)

(Dx/2)2 . (3.11)
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By introducing the usual dimensionless quantities V 5 g Dt, K 5 k Dx, b 5

c(Dt/Dx), and U0 5 u0/c, (3.11) can be written as

sin2(V/2) 2 b2 sin2(K/2) 5 0, (3.12)

and for the continuous case, the dispersion relation is

V 5 bK.

Figure 1 shows the curves V(K) of these relations with b 5 0.75. With the
dimensionless variables, we have vf 5 cV/bK. As one can see, the leapfrog phase
velocity vf remains always less than c, the difference between vf and c increasing
with the wavenumber k. In these conditions, the particle velocity uu0u can exceed
vf , especially for the high wavenumbers and if the particles move fast enough. This

FIG. 2. Stability limit for the leapfrog scheme.
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FIG. 3. Dispersion relations for the new scheme1 and the continuous case2.

leads to an unwanted exponentially growing instability which is called, by analogy
with the continuous case, the numerical Tcherenkov instability.

In order to quantify this phenomenon, we return to the condition (3.9), where c
is replaced by the numerical phase velocity g/k. By doing this, we assume that the
errors due to the discretization on the electromagnetic fields and the coupling are
negligible. In other terms, it is assumed that the nonpositivity of the roots arising
from the term c 2 u0 , is essentially (i.e., at first order) due to the error made on
the approximation of the propagation velocity c. For the leapfrog scheme, (3.9) is
then approximated, in dimensionless quantities by

V2
p

c3
0

1 (2 arcsin(b sin K/2))2 2 b2K2U 2
0 . 0. (3.13)

From this inequality we are not able to guess an analytic expression of klim, whereas
it was possible from (3.10). We then perform a numerical study of (3.13) for different
values of Vp , with 1 # c0 # 20, 0 , b , 1, and 0 # K # f. By doing this, we
numerically determine that there exists a Klim such that the inequality (3.13) is
fulfilled if and only if K , Klim .

Figure 2 shows Klim as a function of (b, c0), with Vp Q 5.1023, which corresponds
to typical densities and timesteps of a weakly dense electron beam modelling. On
this figure, the value of Klim is truncated at f corresponding to the two points per
wavelength limit value of discretization. One can conclude that there is a large
domain in (b, c0, K), where the numerical Tcherenkov instability can be produced
by the leapfrog scheme.
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To overcome this difficulty, the use of high-order discretization methods or finer
resolutions are partial remedies, but they do not allow to control the arising of the
instabilities. Another approach is to construct numerical schemes whose phase
velocities are always greater than c. The new scheme we presented in (2.2) is a first
attempt to satisfy this constraint. For « 5 0, the dispersion relations of the new
scheme in dimensionless variables is written as

sin2(V/2) 2
b2

12
(cos 2K 2 10 cos K 1 9) 5 0. (3.14)

This relation is depicted on Fig. 3 with b 5 0.75bmax , where bmax denotes the
admissible maximal value of b such that the stability condition is verified (see
(2.34)). In these conditions, this figure is comparable to Fig. 1, obtained with the

FIG. 4. Stability limit for the new scheme.
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FIG. 5. Time variation of the emission law at the cathode for t 5 0.2T.

leapfrog scheme. One can see that the phase velocity of the new scheme, for this
b, is such that

vf . c for K , 2.85,

vf , c for K . 2.85,

and conclude that the numerical Tcherenkov instability could occur just for the
very high wavenumbers. To make this point more precise, one can derive for the
new scheme a condition similar to (3.13), saying

V2
p

c3
0

1 S2 arcsin Sb
cos 2K 2 10 cos K 1 9

12 D1/2D2

2 b2K2U 2
0 . 0. (3.15)

As for the leapfrog case, it can be numerically shown that there exists a Klim ,
such that the inequality (3.15) is fulfilled if and only if K , Klim . Figure 4 shows
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Klim as a function of (b, c0), in the same conditions as for the leapfrog scheme (see
Fig. 2). The stability domain here is obviously larger than in the first case. Then
we may expect the numerical Tcherenkov instability to occur for a small number
of wavelengths. In the following section, we will see how to reduce these remaining
instabilities again with the aid of the dissipation term (« ? 0) in the new scheme.

4. NUMERICAL RESULTS

The stability analysis was developed by assuming a homogeneous neutral plasma.
The numerical application we present here is, however, concerning a stiff short
electron bunch. Consider a two-dimensional device in axisymmetric geometry
(r, z). An electron bunch is emitted from a cathode at the input z 5 0. It is
accelerated by an external electric field and confined by a longitudinal Bz magnetic
field. We follow the motion of these particles in a 50-cm drift tube. The electron

FIG. 6. Phase space for a smooth beam (leapfrog and new scheme).



188 ASSOUS, DEGOND, AND SEGRÉ

FIG. 7. Phase space for a stiff beam (leapfrog).

bunch dynamics is hardly dependent on the time and axial (r) variations of the
emission law of the cathode current. We choose here:

if r # R,

j(r, t) 5
Q

2S(T 2 t) F1 1 sin Sf
t

(t 2 t/2)DG, 0 # t # t,

j(r, t) 5
Q

S(T 2 t)
, t # t # T 2 t,

j(r, t) 5
Q

2S(T 2 t) F1 1 cos Sf
t

(T 2 t 2 t)DG, T 2 t # t # T,

j(r, t) 5 0, t . t ;

if r . R, j(r, t) 5 0,
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where Q denotes the total charge of the beam, S is the area of the emission surface
(a circle with a radius R), T is the emission duration, and t characterizes the
longitudinal stiffness of the bunch.

The emission law time variation is depicted Fig. 5 with T 5 100 ps, t 5 20 ps,
Q 5 10 nc, S 5 1 cm2. As we previously mentioned, the numerical simulation of
sufficiently stiff bunches with classical schemes (as the leapfrog) leads to instabilities.

In order to investigate this phenomenon, the results obtained with the new scheme
and the leapfrog scheme will be compared. In this context, the most useful diagnostic
is the phase space representation z/Pz , where Pz denotes here the ‘‘normalized
momentum,’’ i.e. Pz 5 cVz . It will be shown after 50 cm of transport, where c0 is
then equal to 7. The computational domain is regularly discretized with square
meshes divided into two triangles, in order to be in a situation quite similar to finite
differences. We define a pseudo space step Dx equal to the length of the cell sides.

As a first case, we choose t 5 T/2 to obtain a beam which is smooth in the
longitudinal direction. The parameters are Dx 5 7 3 1024m and Dt 5 1.6 3 10212,
leading to b Q 0.68. Figure 6 shows the phase space z/Pz obtained with the leapfrog

FIG. 8. Phase space for a stiff beam (new scheme, « 5 0).
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FIG. 9. Phase space for a stiff beam (new scheme, « 5 0.1).

scheme; no instability can be observed. The same case performed with the new
scheme and « 5 0 give exactly the same result.

Consider now the case where t 5 0.2 T (see Fig. 5). Figure 7 shows the result
obtained with the leapfrog scheme. One can see the appearance of the early stage
of an unphysical high amplitude oscillation that would continue to grow up if we
let the simulation go on. Also it has to be pointed out that the energy variations
at the beam head and tail are due to the axial self-electric field (i.e. are not
an instability). One can measure the wavelength of this oscillation; we obtain
l Q 5.7 3 1023 that corresponds to K Q 0.77. From (3.13), one can numerically
evaluate the wavenumber limit Klim , with the corresponding plasma frequency
Vp 5 7.36 3 1023. We obtain Klim 5 0.67, that is consistent with the previous result.

The same computation is then performed with the new scheme and « 5 0 in
analogous conditions, namely Dt 5 1.23 3 10212s (b Q 0.53, i.e., Q0.68 bmax ). The
phase space z/Pz, depicted in Fig. 8 still shows an unwanted instability, but its
amplitude is strongly damped and its wavelength is shorter than in the leapfrog
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case. The corresponding K is about K Q 1.78 and the wavenumber limit obtained
from (3.15), with Vp 5 5.27 3 1023 is Klim 5 2.80.

Under these conditions, the stability analysis developed in Section 3 leads us to
predict that the wavenumber of the Tcherenkov instability occurring with the new
scheme is higher than the one occurring with the leapfrog scheme. However, it
does not allow us to predict precisely a Klim compatible with the numerical results,
even if it proved to be qualitatively correct. This gap can be explained by recalling
first that the stability analysis was developed with a neutral homogeneous plasma,
whereas the previous example is concerned with an electron bunch. Then, it was
used as finite differences discretisation of the Maxwell equations, whereas a finite
element method on triangles is used in practice.

In order to reduce the remaining instability, we use the property that the new
scheme induces dissipation for « ? 0. As we previously mentioned, this dissipation
increases with the frequency, which is well adapted here. One can see on Fig. 9
that the oscillations have practically disappeared from the phase space z/Pz obtained
with « 5 0.1, without any other modification of the result. Moreover, the loss on
the total energy of the beam is only 2 3 1024 (in relative value), after a propagation
of 50 cm.

5. CONCLUSION

In this paper, we proposed a new scheme for the wave equation, in which the
numerical phase velocity is greater than the light velocity in a large domain of the
(b, K) space. This property allows us to significantly reduce the numerical Tcheren-
kov instability that often appears in the Maxwell–Vlasov simulations. By using
an additive dissipation term, controlled by a parameter «, we can improve again
this result.

In numerical experiments, we use the finite element version of this scheme to
model the motion of particle bunches (see [18]). It could be interesting to apply it
in a finite differences code, in order to quantify the performance of this scheme in
this context. Finally, we project using this scheme in full plasma simulations.
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